
# Yet Another Code Practice Oscillator

5/5/2021 Jon - KI6RT


While most HF rigs can be configured to act as a code practice oscillator for new hams an IC 7300, FT 991, or other comparable transceiver may not be readily available. While CPO (code practice oscillators) circuits are everywhere this CPO design (leveraged from implementations created by others and placed into the public domain) attempts to:

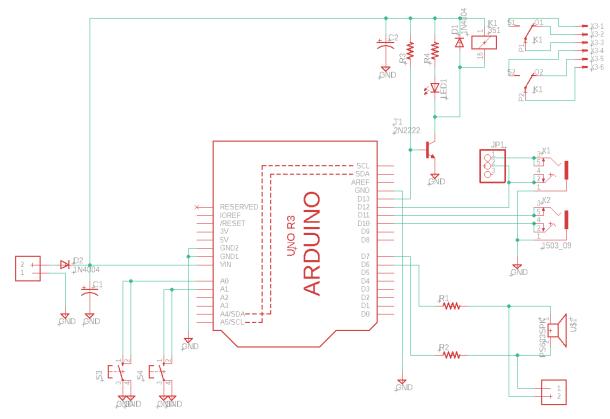
- 1. Build on low cost Arduino Uno (now available for as little as \$3-\$5/board) as a shield
- 2. Power flexibility (5V to 30V DC) I am using a 9V Battery
- 3. Supports straight and lambic keyers driving a low cost speaker
- 4. May be used to key other transmitters/transceivers and or TR switches using the optional circuity provided via a DPDT relay
- 5. Enough remaining memory and spare DIO pins to add your own features (e.g. button to auto send CW messages like "CW CW CW QRP de KI6RT K")



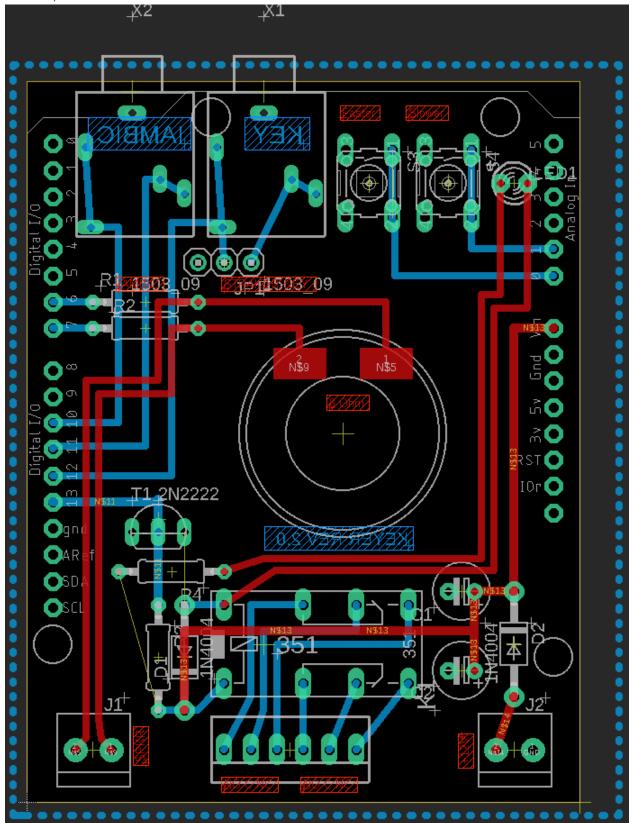
### Overview

The CPO is designed as an Arduino Uno shield using standard 2.54 spacing headers. DPDT relay used to key a transmitter is not populated due to potential interference with the Arduino USB connector.




Notes

- 1. Miniature speaker is glued on using silicon calking or double stick tape
- 2. Jumper JP1 is not populated but is provided in case a mono phone jack is used
- 3. J1 is provided to solder an optional external speaker


## Bill Of Materials

| ITEM             | REF<br>DESIG | DESCRIPTION                                           | MANUFACTURER              | ORDER INFO                                        |
|------------------|--------------|-------------------------------------------------------|---------------------------|---------------------------------------------------|
| optional         | C1, C2       | 47uF 25V electrolytic capacitor                       | generic                   |                                                   |
| 1                | R1, R2       | 100 ohm 1/4 watt resistor                             | generic                   | Tadya Electronics A-2051                          |
| optional         | R3           | 4.7K ¼ watt resistor                                  | generic                   |                                                   |
| optional         | R4           | 1K ¼ watt resistor                                    | generic                   |                                                   |
| 2                | D1, D2       | 1N4001A silicon diode                                 | generic                   | Tadya Electronics A-162                           |
| optional         | T1           | 2N2222 NPN transistor                                 | generic                   |                                                   |
| optional         | LED1         | 5mm LED, color of users choice                        | generic                   |                                                   |
| 3                | S2, S3       | Tactile momentary switch                              | C&K PTS645SK43JSMTR92 LFS | Mouser 611-SM43JSMTR92LFS                         |
| 4                | X1, X2       | 3.5 mm headphone jack                                 | Switchcraft 35RAPC2BH3    | Mouser 502-35RAPC2BH3                             |
| user<br>supplied | SPK1         | 8 ohm miniature speaker                               | Visaton K23 – 8 ohm       | Mouser 243-K23-8OHM                               |
| optional         | K1           | 12V DPDT Relay                                        | generic                   |                                                   |
| user<br>supplied | na           | 40 pin 2.54mm header strip                            | generic                   | Tadya Electronics A-197                           |
| user<br>supplied | Na           | Arduino Uno<br>(any generation or clone will<br>work) | generic                   | Sparkfun \$22.95<br>Amazon \$20.16<br>eBay \$3.99 |

# Schematic



### PCB Layout



### **Build Instructions**

- 1. Trim & solder header strips
- 2. Install X1 & X2 (depending on supplier may need to trim leads to insert into PCB)
- 3. Install S2 & S3
- 4. Install R1 & R2
- 5. Install SPK1 and glue to PCB
- 6. Install D2 polarity protection diode
- 7. Program the Arduino Uno (email me for the latest source that I will upload to groups.io once fully debugged)

### Operation

- 1. Plug shield onto programmed Arduino, connect key and power.
- 2. In lambic mode use the momentary contact switch to increase/decrease CW rate.